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Kinetic phase transition in the antiferromagnetic Ising model with competing dynamics
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The antiferromagnetic Ising model on a square lattice is studied by the dynamic pair approximation, and the
competition between the Glauber and Kawasaki dynamics is examined at zero tempErafuria the phase
diagram drawn as a function of the competing paramgtéhe important result such as the self-organization
is found, and the effects of the spin-exchange strength in the Kawasaki process on the ordered ferromagnetic
and antiferromagnetic states are discussed. We find that the exchange in the Kawasaki dynamics favors the
ordered ferromagnetic stafe51063-651X98)01703-9

PACS numbd(s): 64.60.Ht

In recent years there has been much interest in the physi@nd the system self-organizes into an ordered antiferromag-
of dynamic or nonequilibrium phase transitions. In particu-netic phase. In contrast, when the interactions between spins
lar, the kinetic Ising model was introduced as a simplifiedare of the antiferromagnetic type, Grandi and Figueiledp
model for a variety of biological, chemical, and physical found that the self-organization phenomenon does not appear
systems[1-7]. The usual kinetic Ising model was investi- When the Kawasaki dynamics dominates, and the only stable
gated by allowing only single spin flips, which were first Phase that remains is the paramagnetic one. Despite this the-
introduced by Glaubef8]. As is well known, however, the oretical progress, some important effects on the phase tran-
Glauber kinetic Ising model is a special case of more generdition of such systems have not been addressed, because the
spin-flip models that admit multiple spin flips. The kinetic Kawasaki dynamics has been simplified to be independent of
Ising model in the presence of multiple spin flips serves forthe strength of exchange between spins when the change in
the study of self-organization phenomena in many differen€nergy is less than zef®,10]. In this paper, we apply the
problems concerning the phase transitions of the magnetidynamical pair approximation to examine the competition
systems. The emergence of the phenomena of selbetween the Glauber and the Kawasaki dynamics in the two-
organization in the kinetic Ising spin system has been studiedimensional Ising antiferromagnetic system at zero tempera-
by using the master-equation formalism when the system i#ire. We will be interested in particular in the Kawasaki
governed by two competing processes: the one-spin-flifjwo-spin exchange process. We think that the exchange
Glauber dynamicg8] and the two-spin-flip Kawasaki dy- Probability between spins is dependent on the strength of
namics[7]. For the Glauber process, the system is characteexchange between spins. Our goal is to determine whether
ized by single spin flips due to its contact with the heat batihe competition between this modified Kawasaki dynamics
at fixed temperaturd. On the other hand, the Kawasaki and the spin-flip Glauber one causes the self-organization
dynamics is characterized by the exchange of the states @BhaVior. The result is novel: the SyStem will Self-organize
two nearest-neighbor spins. Depending on the competitioffom the paramagnetic phase into the ordered ferromagnetic
between the Glauber process with a weighand the Ka- phase when the Kawasaki dynamics is the dominant one. For
wasaki process with a weight (Ip), one can determine an the vanishing of the spin-exchange strength, our result re-
interesting phase diagram as a function of the competinguces to that obtained by Grandi and Figueirgtid| where
parametep, which shows ferromagnetic, antiferromagnetic, the ordered ferromagnetic phase does not exist.
and paramagnetic phases. For a two-dimensional ferromat];- We consider an antiferromagnetic Ising model on a square
netic Ising system, Tome and de Olive{i@] showed that lattice with N lattice sites. The state of the system is repre-
within the dynamical pair approximation, the system undersented byr= (04,05, ... ,0i, ...oy), whereo; is the spin
goes a phase transition from the ferromagnetic to the parasriable at sita, taking the valuet+1 or —1. The energy of
magnetic phase as the value<{p) is increased, and for a the system in state is given by
further increase of (% p) the Kawasaki process dominates,
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write the evolution of the state in time through the master
equation. LetP(o,t) be the probability of state- at timet. (f(0))=2 f(o)P(a1). ®
The evolution ofP(a,t) is given by the master equation 7
Combining the master equati@®) with Eqg. (8), the equa-
dP(o,) :2 [P(o’ Hol(o' o) —P(otw(o,o')] tion for the magnetizatiofio;) of spini and for the correla-
dt < ’ ’ ' ’ ' tion (o) of the nearest-neighbor spjnandk can be de-
(2 rived to yield

wherew(o’,0) gives the probability, per unit time, of the d(o;)
transition from stater’ to stateo, if the system is state’. dt PA+(1-p)B;, ©
In order to take into account the two competing Glauber and
Kawasaki dynamics, we assume that d{;ay)
at =pAj+(1=p)Bj, (10
w(o',0)=pwg(c’,0)+(1-p)wk(o’, o), 3
with
where p measures a weight for the Glauber process and
(1—p) for the Kawasaki one. Anad(o’,0) is associated A=—2(oywi(0)), (11)
to the Glauber process angl(o’,0) to the Kawasaki pro-
cess, respectively. The Glauber process is simulated by the A= —2(ojowi(0)) — 2(ojorw(0)), (12
one-spin flip dynamic$8], so that
B= 2 ((o-o)ai(o), (13
wG(OJ 10-) = izl 50’10160éo’2' o 60’{ 70'i' o 50'"\10Nwi(0-)’ (NN of i)
4

wherew; (o) is the probability of flipping spin. The contact Sik I(;k) {olar=a)wn(o)
with the heat bath at temperature= 0 follows the Metropo-
lis prescription
+ 2 (o(o—agen(), (14
1, if AE=<O (NN of k)
@(O)=0 it AE>0 ®
' i where(NN of i) means that the summation is over the near-
est neighbors of site. Although the set of equationd1)—
4) is exact, the mean values of these equations cannot be
alculated because we do not know the exact full expression
for the probabilityP(o,t). Here, we apply the pair approxi-
N mation method9,11] to calculate the average value in Egs.
oo’ )= 2 50101- . 50.,0{ S (11)—(14). In the.pair.approximation, the system is descri_bed
{0 i I by a central spin with its nearest neighbors and a pair of
(6)  nearest-neighbor spins surrounded by its nearest-neighbor
. - spins to estimate the quantitiég,A; andB; ,Bj, respec-
where w;j(o) is the probability of exchange between the tiyely. The probability of the various environments of a
nearest-neighbor spinandj. If the change in energy after given spin or pair of spins is written in terms of the prob-
exchanging the neighboring spinandj is positive, then the  apjlity of a pair of sping9,11,13, which, in turn, is obtained
new configuration is automatically accepted; if, however, itfrom the values of(a;) and (ooy). Thus a set of self-
is negative, the new configuration is accepted with probabilzonsistent equations for the time evolution of;) and

ity, depending on the strength of the exchange betweefl; ;) are obtained by averaging over the probability of

where AE; is the change in energy obtained after flipping
spini. On the other hand, the Kawasaki process is simulate
by the two-spin exchange dynamigcg, that is,

: 50"\‘0'Nwij (0-)1

spins. We take clusters of spins considered. We assume that the lattice is
i bipartite and divided into 1 and 2 sublattices, with respective
_ expAE; /D), if AE;<0 7 magnetizationsn, andm,. Then, we look for solutions such
wij(0)= 1, if AE;=0, D that (ai)=m, for any spin belonging to sublattice 1,

(o;)=m, for any spin belonging to sublattice 2, and
whereAE;; is the change in energy obtained after exchangdaio;)=r for any pair of nearest-neighbor spinandj. By
of spinsi andj. D is the strength of exchange between twousing the pair approximation and taking into account the
nearest-neighbor spirisandj. In the vanishing of the two- transition probability given by Eq$3)—(7), after straightfor-
spin exchange strengtb=0, Eq. (7) reduces to the case ward calculation on Eqs(11)—(14) we obtain the self-
considered by Grandi and Figueired®0]. On the other consistent equations for the evolution of the quantities
hand, for very large values db, Eq. (7) shows that the m;, mj,, andr,
system favors the full exchange between spins, independent
of the energy change of exchange between spins. Let us de- dmy

note by(f(c)) the average of the state functib(w), that is, gt~ PAuML, My, D)+ (1= p)By(my,my,r), - (15
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dm,
0 = PAMy My, )+ (1= P)Bo(my,my.r),  (16)

dr
a:pAlZ(mlamZvr)+(1_p)812(m11m21r)a (17

whereAq, A, Ao, By, By, andBy, are given by

2
A(my,my,r)=— —(2*+42%,+67%3)
X1

2
+ F(wu Aawdv,+6w23), (18
1

Ax(my,my,r)=A;(my,my,r), (19

1 1
AlZ(mllm21r): - _3(224+42301)_ —3(2W4+4W302)
X1 Y1

1 1
— 522 +42%,) - S (2w +4wy,),
X2 Y2

(20)
8 3.4 2.5 6 7
Bl(ml,mz,r):_?[z U1+3Z Ul+32Ul+Ul
X1Y2

+372°wo’+922wu+ 92w + 3wu §
+39%22W0 i+ 92w 3+ 92w )

+3w2 S+ 732%w3u  + 3722w 2

8
+37;ZV\13v§+W3vzll]+ X3—y3[23vg+ 32202
2¥1

+3zv5+ v+ 39Z8woi+ 922wu s+ 92w 3
+3wos+ 3722w+ 922w
+9zWus+ 3w2us+ °2wu,
+37222Wiv 3+ 32w s+ wij], (21

Bo(my,my,r)=—By(my,my,,r), (22

12 s 6 5, 7 6
Bia(my,my,r)= ——=[z%v7+2zv7+3wzvy+ v +2wo
X1¥2

+W2v§— nwz%i— 2772W223vi

—3pw?z% i’— 732w, — 77W32vf

12
—27° WA ]+ ——[Z2v5+ 225
X2¥1

+3wzs+vs+ 2w+ W3- pwzu3

223U§ 3_ 353,43

—27°wW —377W22202 7°Z°W0,

— pwizw3—29?w3], (23
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where

X1=3(1+my), y;=3(1—-my),

Xo=3(1+my),  y,=3(1-my),

z=7(1+my+my+r), vi=z(1+mg—my—r),

vo=3(1-my+my,—r), w=3i(l—-m;—my+r),

n=exp(—4JID).

Depending on the parametens; and m,, there are the
following three types of stationary states: the paramagnetic
m;=m,=0, the ferromagnetion,=m,+# 0, and the antifer-
romagnetic staten;=—m,#0. The paramagnetic state cor-
responds to the trivial solutions of Egil5)—(17). Setting
m;=m,=0, we get the equation describing the paramag-
netic stable state,

p(z*+22%)—24(1—p)(52%0°+ 4zv8+v"— %25
— 47?252 -592%%) =0, (24)

where z=(1+r*)/4, v=(1-r*)/4, n=exp(-4J/D), and
r=r* is the solution ofpA;,(0,0r*)+(1—p)B12(0,0r*)

=0. On the other hand, we can distinguish the ferromagnetic
state from the antiferromagnetic state by defining the quan-
tities my=(m;—m,)/2 andmg=(m;+m,)/2, respectively.

To derive the transition lines for the disordered paramagnetic
and ordered phases, we can expand the right-hand side of
Egs.(15—(17) up to linear terms irm; andm, and obtain

dmy
TN (25
dmg
gt - MME (26)

where
Ma=16p(6z*+ 24230 + 362202 — 473 — 127%)
+512A1—p)[152%(120°—5v%)
+62(120°—6v°) + (120 "= 7v%) +2023(120%— 4v3)
+ 159241203 - 3v%) + 129°2%(6v%—v)
+7°2%(12p-1)],
Ne=16p[12(322— 2)v%+ 12223 — 2?)v — 423+ 62%].

The boundary between the ferromagnegantiferromag-
netic and paramagnetic phases is given by the simultaneous
solution of Eq.(24) andAg=0 (A,=0). The resulting phase
diagram is shown in Fig. 1. As is seen from this figure, the
stable antiferromagnetic region is very small nparl even
at zero temperaturé=0, and is easily destroyed by a small
ratio (1—p)/p where the Glauber process still dominates.
Increasing the ratio (£ p)/p, the equilibrium ordered anti-
ferromagnetic state quickly disappears, giving place to the
disordered paramagnetic state. With a further increase of the
ratio (1—p)/p, the Kawasaki process starts to dominate. A
most interesting finding is that for nonzero exchange strength
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80 ferromagnetic and paramagnetic phases, which occurs at
large values of the competition parameter where the
D/ [ Glauber process dominates, is affected only slightly by the
60 |- strength of exchangd. In contrast, the paramagnetic-
AR ferromagnetic phase transition appearing at large values of
I P F (1—p) for any exchange rat®+#0 where the Kawasaki
e process dominates, is affected largely by the strength of ex-

changeD. We find that the region of the ferromagnetic phase
is enlarged by increasing the magnitude of the spin-exchange
20k strengthD in the Kawasaki process when the change in spin-
exchange energy is less than zero. This indicates that the
two-spin exchange strength favors the ferromagnetic order-
. . ing, like phase separation problem in chemically reactive bi-
0 1 2 nary mixtureq 6].
(1-p)ip In conclusion, the antiferromagnetic Ising model with
competing Glauber and Kawasaki dynamics has been inves-
FIG. 1. Phase diagram of the antiferromagnetic Ising systentigated by combining the master-equation formalism with the
with competing Glaube(probability p) and Kawasakiprobability =~ dynamic pair approximation. We have discussed aspects of
1-p) dynamicsD measures the strength of exchange between twahe self-organization phenomenon of the systef=a0, and
nearest-neighbor spins whexE;; is less than zero. As the ratio demonstrated the existence of the transition from the disor-
(1-p)/p increases, the system goes continuously from the antiferdered paramagnetic into the ferromagnetic phases as the ratio
_romagnetic(AF) to the paramagnetitP) state, and self-organizes (1—-p)/p increases. The region of the ferromagnetic phase
into an ordered ferromagnet(€) stable state. decreases with a decrease of the spin-exchange stréngth
and when the strength of exchanQe=0, our results reduce

D0 the system will self-organize into a new stationary, hat of Grandi and Figueiredo, where the ordered ferro-
phase, which is identified with the ordered ferromagnencmagnetic state disappears.

phase. In theD—0 limit, the paramagnetic-ferromagnetic

phase boundary does not appear and there exist only two This work was supported by the Fifth Huo Ying-dong
stationary antiferromagnetic and paramagnetic states. This iBeacher’'s Foundation, the National Nature Science Founda-
agreement with the conclusion of Grandi and Figueireddion of China, and the Doctoral Foundation of Chinese Edu-
[10]. On the other hand, the transition line between the antication Commission.
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