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Kinetic phase transition in the antiferromagnetic Ising model with competing dynamics
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The antiferromagnetic Ising model on a square lattice is studied by the dynamic pair approximation, and the
competition between the Glauber and Kawasaki dynamics is examined at zero temperatureT50. In the phase
diagram drawn as a function of the competing parameterp, the important result such as the self-organization
is found, and the effects of the spin-exchange strength in the Kawasaki process on the ordered ferromagnetic
and antiferromagnetic states are discussed. We find that the exchange in the Kawasaki dynamics favors the
ordered ferromagnetic state.@S1063-651X~98!01703-6#

PACS number~s!: 64.60.Ht
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In recent years there has been much interest in the phy
of dynamic or nonequilibrium phase transitions. In partic
lar, the kinetic Ising model was introduced as a simplifi
model for a variety of biological, chemical, and physic
systems@1–7#. The usual kinetic Ising model was invest
gated by allowing only single spin flips, which were fir
introduced by Glauber@8#. As is well known, however, the
Glauber kinetic Ising model is a special case of more gen
spin-flip models that admit multiple spin flips. The kinet
Ising model in the presence of multiple spin flips serves
the study of self-organization phenomena in many differ
problems concerning the phase transitions of the magn
systems. The emergence of the phenomena of s
organization in the kinetic Ising spin system has been stud
by using the master-equation formalism when the system
governed by two competing processes: the one-spin
Glauber dynamics@8# and the two-spin-flip Kawasaki dy
namics@7#. For the Glauber process, the system is charac
ized by single spin flips due to its contact with the heat b
at fixed temperatureT. On the other hand, the Kawasa
dynamics is characterized by the exchange of the state
two nearest-neighbor spins. Depending on the competi
between the Glauber process with a weightp and the Ka-
wasaki process with a weight (12p), one can determine a
interesting phase diagram as a function of the compe
parameterp, which shows ferromagnetic, antiferromagnet
and paramagnetic phases. For a two-dimensional ferrom
netic Ising system, Tome and de Oliveira@9# showed that
within the dynamical pair approximation, the system und
goes a phase transition from the ferromagnetic to the p
magnetic phase as the value (12p) is increased, and for a
further increase of (12p) the Kawasaki process dominate
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and the system self-organizes into an ordered antiferrom
netic phase. In contrast, when the interactions between s
are of the antiferromagnetic type, Grandi and Figueiredo@10#
found that the self-organization phenomenon does not ap
when the Kawasaki dynamics dominates, and the only sta
phase that remains is the paramagnetic one. Despite this
oretical progress, some important effects on the phase t
sition of such systems have not been addressed, becaus
Kawasaki dynamics has been simplified to be independen
the strength of exchange between spins when the chang
energy is less than zero@9,10#. In this paper, we apply the
dynamical pair approximation to examine the competiti
between the Glauber and the Kawasaki dynamics in the t
dimensional Ising antiferromagnetic system at zero temp
ture. We will be interested in particular in the Kawasa
two-spin exchange process. We think that the excha
probability between spins is dependent on the strength
exchange between spins. Our goal is to determine whe
the competition between this modified Kawasaki dynam
and the spin-flip Glauber one causes the self-organiza
behavior. The result is novel: the system will self-organ
from the paramagnetic phase into the ordered ferromagn
phase when the Kawasaki dynamics is the dominant one.
the vanishing of the spin-exchange strength, our result
duces to that obtained by Grandi and Figueiredo@10# where
the ordered ferromagnetic phase does not exist.

We consider an antiferromagnetic Ising model on a squ
lattice with N lattice sites. The state of the system is rep
sented bys5(s1 ,s2 , . . . ,s i , . . .sN), wheres i is the spin
variable at sitei , taking the value11 or 21. The energy of
the system in states is given by

E5J(
^ i , j &

s is j , ~1!

where J.0 for antiferromagnetism, and̂i , j & runs over
nearest neighbors. Following Tome and de Oliveira@9#, we
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write the evolution of the states in time through the maste
equation. LetP(s,t) be the probability of states at time t.
The evolution ofP(s,t) is given by the master equation

dP~s,t !

dt
5(

s8
@P~s8,t !v~s8,s!2P~s,t !v~s,s8!#,

~2!

wherev(s8,s) gives the probability, per unit time, of th
transition from states8 to states, if the system is states8.
In order to take into account the two competing Glauber a
Kawasaki dynamics, we assume that

v~s8,s!5pvG~s8,s!1~12p!vK~s8,s!, ~3!

where p measures a weight for the Glauber process
(12p) for the Kawasaki one. AndvG(s8,s) is associated
to the Glauber process andvK(s8,s) to the Kawasaki pro-
cess, respectively. The Glauber process is simulated by
one-spin flip dynamics@8#, so that

vG~s8,s!5(
i 51

N

ds
18s1

ds
28s2

•••ds
i82s i

•••ds
N8 sN

v i~s!,

~4!

wherev i(s) is the probability of flipping spini . The contact
with the heat bath at temperatureT50 follows the Metropo-
lis prescription

v i~s!5H 1, if DEi<0

0, if DEi.0,
~5!

where DEi is the change in energy obtained after flippi
spin i . On the other hand, the Kawasaki process is simula
by the two-spin exchange dynamics@7#, that is,

vK~s8,s!5(
^ i , j &

N

ds
18s1

•••ds
i8s j

•••ds
j8s i

•••ds
N8 sN

v i j ~s!,

~6!

where v i j (s) is the probability of exchange between th
nearest-neighbor spini and j . If the change in energy afte
exchanging the neighboring spinsi and j is positive, then the
new configuration is automatically accepted; if, however
is negative, the new configuration is accepted with proba
ity, depending on the strength of the exchange betw
spins. We take

v i j ~s!5H exp~DEi j /D !, if DEi j ,0

1, if DEi j >0,
~7!

whereDEi j is the change in energy obtained after exchan
of spinsi and j . D is the strength of exchange between tw
nearest-neighbor spinsi and j . In the vanishing of the two-
spin exchange strengthD50, Eq. ~7! reduces to the cas
considered by Grandi and Figueiredo@10#. On the other
hand, for very large values ofD, Eq. ~7! shows that the
system favors the full exchange between spins, indepen
of the energy change of exchange between spins. Let us
note by^ f (s)& the average of the state functionf (s), that is,
d
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^ f ~s!&5(
s

f ~s!P~s,t !. ~8!

Combining the master equation~2! with Eq. ~8!, the equa-
tion for the magnetization̂s i& of spin i and for the correla-
tion ^s jsk& of the nearest-neighbor spinj andk can be de-
rived to yield

d^s i&
dt

5pAi1~12p!Bi , ~9!

d^s jsk&
dt

5pAjk1~12p!Bjk , ~10!

with

Ai522^s iv i~s!&, ~11!

Ajk522^s jskv j~s!&22^s jskvk~s!&, ~12!

Bi5 (
l

~NN of i !

^~s l2s i !v l i ~s!&, ~13!

Bjk5 (
l ~Þk!

~NN of j !

^sk~s l2s j !v j l ~s!&

1 (
l ~Þ j !

~NN of k!

^s j~s l2sk!vkl~s!&, ~14!

where~NN of i ! means that the summation is over the ne
est neighbors of sitei . Although the set of equations~11!–
~14! is exact, the mean values of these equations canno
calculated because we do not know the exact full expres
for the probabilityP(s,t). Here, we apply the pair approxi
mation method@9,11# to calculate the average value in Eq
~11!–~14!. In the pair approximation, the system is describ
by a central spin with its nearest neighbors and a pair
nearest-neighbor spins surrounded by its nearest-neig
spins to estimate the quantitiesAi ,Ajk and Bi ,Bjk , respec-
tively. The probability of the various environments of
given spin or pair of spins is written in terms of the pro
ability of a pair of spins@9,11,12#, which, in turn, is obtained
from the values of̂ s i& and ^s jsk&. Thus a set of self-
consistent equations for the time evolution of^s i& and
^s jsk& are obtained by averaging over the probability
clusters of spins considered. We assume that the lattic
bipartite and divided into 1 and 2 sublattices, with respect
magnetizationsm1 andm2. Then, we look for solutions such
that ^s i&5m1 for any spin belonging to sublattice 1
^s j&5m2 for any spin belonging to sublattice 2, an
^s is j&5r for any pair of nearest-neighbor spinsi and j . By
using the pair approximation and taking into account
transition probability given by Eqs.~3!–~7!, after straightfor-
ward calculation on Eqs.~11!–~14! we obtain the self-
consistent equations for the evolution of the quantit
m1 , m2, andr ,

dm1

dt
5pA1~m1 ,m2 ,r !1~12p!B1~m1 ,m2 ,r !, ~15!
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dm2

dt
5pA2~m1 ,m2 ,r !1~12p!B2~m1 ,m2 ,r !, ~16!

dr

dt
5pA12~m1 ,m2 ,r !1~12p!B12~m1 ,m2 ,r !, ~17!

whereA1, A2, A12, B1, B2, andB12 are given by

A1~m1 ,m2 ,r !52
2

x1
3 ~z414z3v116z2v1

2!

1
2

y1
3 ~w414w3v216w2v2

2!, ~18!

A2~m1 ,m2 ,r !5A1~m2 ,m1 ,r !, ~19!

A12~m1 ,m2 ,r !52
1

x1
3 ~2z414z3v1!2

1

y1
3 ~2w414w3v2!

2
1

x2
3 ~2z414z3v2!2

1

y2
3 ~2w414w3v1!,

~20!

B1~m1 ,m2 ,r !52
8

x1
3y2

3 @z3v1
413z2v1

513zv1
61v1

7

13hz3wv1
319z2wv1

419zwv1
513wv1

6

13h2z3w2v1
219hz2w2v1

319zw2v1
4

13w2v1
51h3z3w3v113h2z2w3v1

2

13hzw3v1
31w3v1

4#1
8

x2
3y1

3 @z3v2
413z2v2

5

13zv2
61v2

713hz3wv2
319z2wv2

419zwv2
5

13wv2
613h2z3w2v2

219hz2w2v2
3

19zw2v2
413w2v2

51h3z3w3v2

13h2z2w3v2
213hzw3v2

31w3v2
4#, ~21!

B2~m1 ,m2 ,r !52B1~m1 ,m2 ,r !, ~22!

B12~m1 ,m2 ,r !5
12

x1
3y2

3 @z2v1
512zv1

613wzv1
51v1

712wv1
6

1w2v1
52hwz3v1

322h2w2z3v1
2

23hw2z2v1
32h3z3w3v12hw3zv1

3

22h2z3w2v1
2#1

12

x2
3y1

3 @z2v2
512zv2

6

13wzv2
51v2

712wv2
61w2v2

52hwz3v2
3

22h2w2z3v2
223hw2z2v2

32h3z3w3v2

2hw3zv2
322h2z3w2v2

2#, ~23!
where

x15 1
2 ~11m1!, y15 1

2 ~12m1!,

x25 1
2 ~11m2!, y25 1

2 ~12m2!,

z5 1
4 ~11m11m21r !, v15 1

4 ~11m12m22r !,

v25 1
4 ~12m11m22r !, w5 1

4 ~12m12m21r !,

h5exp~24J/D !.

Depending on the parametersm1 and m2, there are the
following three types of stationary states: the paramagn
m15m250, the ferromagneticm15m2Þ0, and the antifer-
romagnetic statem152m2Þ0. The paramagnetic state co
responds to the trivial solutions of Eqs.~15!–~17!. Setting
m15m250, we get the equation describing the parama
netic stable state,

p~z412z3v !224~12p!~5z2v514zv61v72h3z6v

24h2z5v225hz4v3!50, ~24!

where z5(11r * )/4, v5(12r * )/4, h5exp(24J/D), and
r 5r * is the solution ofpA12(0,0r * )1(12p)B12(0,0r * )
50. On the other hand, we can distinguish the ferromagn
state from the antiferromagnetic state by defining the qu
tities mA5(m12m2)/2 andmF5(m11m2)/2, respectively.
To derive the transition lines for the disordered paramagn
and ordered phases, we can expand the right-hand sid
Eqs.~15!–~17! up to linear terms inm1 andm2 and obtain

dmA

dt
5lAmA , ~25!

dmF

dt
5lFmF , ~26!

where

lA516p~6z4124z3v136z2v224z3212z2v !

1512~12p!@15z2~12v525v4!

16z~12v626v5!1~12v727v6!120z3~12v424v3!

115hz4~12v323v2!112h2z5~6v22v !

1h3z6~12v21!#,

lF516p@12~3z22z!v2112~2z32z2!v24z316z4#.

The boundary between the ferromagnetic~antiferromag-
netic! and paramagnetic phases is given by the simultane
solution of Eq.~24! andlF50 (lA50). The resulting phase
diagram is shown in Fig. 1. As is seen from this figure, t
stable antiferromagnetic region is very small nearp51 even
at zero temperatureT50, and is easily destroyed by a sma
ratio (12p)/p where the Glauber process still dominate
Increasing the ratio (12p)/p, the equilibrium ordered anti-
ferromagnetic state quickly disappears, giving place to
disordered paramagnetic state. With a further increase of
ratio (12p)/p, the Kawasaki process starts to dominate.
most interesting finding is that for nonzero exchange stren
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DÞ0 the system will self-organize into a new stationa
phase, which is identified with the ordered ferromagne
phase. In theD→0 limit, the paramagnetic-ferromagneti
phase boundary does not appear and there exist only
stationary antiferromagnetic and paramagnetic states. Th
agreement with the conclusion of Grandi and Figueire
@10#. On the other hand, the transition line between the an

FIG. 1. Phase diagram of the antiferromagnetic Ising syst
with competing Glauber~probability p) and Kawasaki~probability
12p) dynamics.D measures the strength of exchange between t
nearest-neighbor spins whenDEi j is less than zero. As the ratio
(12p)/p increases, the system goes continuously from the anti
romagnetic~AF! to the paramagnetic~P! state, and self-organizes
into an ordered ferromagnetic~F! stable state.
c

o
is

o
i-

ferromagnetic and paramagnetic phases, which occur
large values of the competition parameterp where the
Glauber process dominates, is affected only slightly by
strength of exchangeD. In contrast, the paramagnetic
ferromagnetic phase transition appearing at large value
(12p) for any exchange rateDÞ0 where the Kawasak
process dominates, is affected largely by the strength of
changeD. We find that the region of the ferromagnetic pha
is enlarged by increasing the magnitude of the spin-excha
strengthD in the Kawasaki process when the change in sp
exchange energy is less than zero. This indicates that
two-spin exchange strength favors the ferromagnetic ord
ing, like phase separation problem in chemically reactive
nary mixtures@6#.

In conclusion, the antiferromagnetic Ising model wi
competing Glauber and Kawasaki dynamics has been in
tigated by combining the master-equation formalism with
dynamic pair approximation. We have discussed aspect
the self-organization phenomenon of the system atT50, and
demonstrated the existence of the transition from the dis
dered paramagnetic into the ferromagnetic phases as the
(12p)/p increases. The region of the ferromagnetic pha
decreases with a decrease of the spin-exchange strengD,
and when the strength of exchangeD50, our results reduce
to that of Grandi and Figueiredo, where the ordered fer
magnetic state disappears.
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